Đo lường Nước cứng

Phương pháp đo

Độ cứng trong nước có thể được xác định bằng phương pháp thí nghiệm hóa lý như chuẩn độ hoặc đo bằng thiết bị đo. Phương pháp đo độ cứng của nước phổ biến nhất là phương pháp chuẩn độ dùng axit etylendiamintetraaxetic (EDTA). Phương pháp chuẩn độ EDTA có thể được thực hiện trong phòng thí nghiệm với những thiết bị như buret hoặc với những bộ kit thí nghiệm được chuẩn bị sẵn. Khi chỉ cần đo khoảng giá trị độ cứng của nước mà không cần độ chính xác, có thể dùng giấy thử chỉ thị màu. Độ cứng cũng có thể được đo bằng phương pháp so màu khi dùng dung dịch EDTA và máy quang phổ.[49] Ngoài ra, cũng có thể dùng thiết bị có đầu điện cực chọn lọc ion khi mẫu nước chứa nhiều tạp chất và độ đục cao, dẫn đến khó thực hiện đo bằng phương pháp so màu.[50]

Đơn vị

Độ cứng toàn phần là tổng nồng độ mol của các ion Ca2+ và Mg 2+ được tính theo đơn vị mol/L hoặc mmol/L. Tuy nhiên, độ cứng của nước thường có nhiều đơn vị khác nhau, tùy theo thang đo được sử dụng, như độ cứng tổng quát (dGH), độ cứng Đức (°HD) (không còn được sử dụng nữa), độ cứng Anh (°Clark), độ cứng Pháp (°fH), độ cứng Mỹ (ppm hoặc mg CaCO3/L).[9]

Bảng quy đổi đơn vị độ cứng của nước
1 mmol/L1 ppm, mg/L1 °HD1 °e, °Clark1 °fH
mmol/L10,0099910,17830,14240,09991
ppm, mg/L (Độ cứng Mỹ)100,1117,8514,2510
°HD (Độ cứng Đức)5,6080,0560310,79860,5603
°e, °Clark (Độ cứng Anh)7,0220,070161,25210,7016
°fH (Độ cứng Pháp)10,010,11,7851,4251

Phân loại

Độ cứng của nước cứng bị ảnh hưởng bởi nhiều yếu tố như thành phần các nguyên tố hòa tan trong nước, độ pH, nhiệt độ; do vậy, một thang đo rất khó mô tả chính xác độ cứng của nước. Tuy nhiên, Cục Khảo sát Địa chất Hoa Kỳ đã đưa ra thang đo so sánh và phân loại độ cứng của nước như sau:[51]

Phân loạimg-CaCO3/Lmmol/L°HDppm
Nước mềm0–600–0,600–3,370–60
Nước tương đối cứng61–1200,61–1,203,38–6,7461–120
Nước cứng121–1801,21–1,806,75–10,11121–180
Nước rất cứng≥ 181≥ 1,81≥ 10,12≥ 181

Nước biển có độ cứng toàn phần (chỉ tính dựa trên nồng độ ion Ca2+ và Mg2+) là khoảng 6.558 mg/L theo CaCO3, còn nước ngọt có độ cứng toàn phần dưới 75 mg/L. Những loài cá nước ngọt được khuyến nghị nên nuôi trong môi trường có độ cứng từ 20 đến 400 mg/L.[52] Tại Việt Nam, theo Quy chuẩn Kỹ thuật do Bộ Y tế ban hành, độ cứng tính theo CaCO3 trong nước sinh hoạt có giới hạn tối đa là 350 mg/L được áp dụng đối với các cơ sở cung cấp nước.[53]

Các loại chỉ số

Chỉ số bão hòa Langelier

Chỉ số bão hòa Langelier (LSI) được xem là chỉ số thường gặp nhất trong các chỉ số bão hòa canxi cacbonat, được dùng để xác định khả năng hình thành cáu cặn của nước.[54][55] Chỉ số bão hòa Langelier được đề xuất lần đầu tiên vào năm 1936, bởi Giáo sư Đại học California, W. F. Langelier.[56] Chỉ số bão hòa Langelier dựa trên ảnh hưởng của độ pH đối với độ tan của canxi cacbonat trong nước, theo những phương trình cân bằng sau:[57][58]

H
2CO
3 ⇌ HCO−
3 + H+
HCO−
3 ⇌ CO2−
3 + H+

Chỉ số bão hòa Langelier được xác định bằng hiệu số giữa độ pH đo được của nước (pHa) và độ pH khi bão hòa CaCO3 (pHs), với điều kiện độ cứng và độ kiềm không đổi trong hai trường hợp. Công thức xác định chỉ số bão hòa Langelier được biểu diễn như sau:[54]

LSI = pHa − pHs
  • Nếu LSI > 0, nước có xu hướng hình thành cáu cặn do quá bão hòa CaCO3.
  • Nếu LSI < 0, nước có xu hướng hòa tan CaCO3 có trong nước; do vậy, không có xu hướng tạo thành cáu cặn.
  • Nếu LSI = 0, trong nước tồn tại trạng thái cân bằng của CaCO3, tuy nhiên, những yếu tố như tính chất nước, nhiệt độ, sự bay hơi, đều có thể thay đổi trạng thái cân bằng và chỉ số LSI.[54][59]

Độ pH bão hòa CaCO3 (pHs) được tính theo công thức sau:[59]

pHs = (9,3 + A + B) – (C + D)

Trong đó:

A = log10[TDS] − 1/10B = −13,12 × log10(°C + 273) + 34,55C = log10 [Ca2+] − 0,4D = log10 [ACaCO3]Ghi chú:[TDS]: Tổng chất rắn hòa tan (mg/L)[Ca2+]: Nồng độ Ca2+ tính theo CaCO3 (mg/L hoặc ppm)[ACaCO3]: Độ kiềm tính theo CaCO3 (mg/L hoặc ppm)

Giả sử một mẫu nước có kết quả phân tích hóa lý như sau:[60]

Nhiệt độ = 25 °CpH = 7,5TDS = 320 mg/LCanxi = 150 mg/L (or ppm) tính theo CaCO3Độ kiềm A = 34 mg/L (or ppm) tính theo CaCO3Công thức tính chỉ số bão hòa LSI:LSI = pHa − pHspHs = (9,3 + A + B) − (C + D) với:A = log10[TDS] − 1/10 = 0,15B = −13,12 × log10(°C + 273) + 34,55 = 2,09 (ở điều kiện nhiệt độ 25 °C)C = log10[Ca2+] – 0,4 = 1,78D = log10[ACaCO3] = 1,53pHs = (9,3 + 0,15 + 2,09) – (1,78 + 1,53) = 8,23LSI = 7,5 – 8,23 = −0,73Chỉ số bão hòa LSI nhỏ hơn 0; do vậy, mẫu nước không có xu hướng tạo thành cáu cặn.

Một số nghiên cứu được thực hiện nhằm tìm ra mối liên hệ giữa chỉ số bão hòa Langelier và sự ăn mòn kim loại. Khi chỉ số LSI lớn hơn 0, cáu cặn có thể được hình thành, giúp tạo lớp bảo vệ kim loại chống lại sự ăn mòn. Khi LSI nhỏ hơn 0, lớp cáu cặn không thể hình thành, dẫn đến kim loại có thể bị tấn công bởi tác động ăn mòn của môi trường. Tuy nhiên, việc sử dụng chỉ số LSI nhằm dự báo độ ăn mòn vẫn gây tranh cãi.[61] Theo P.R. Roberge (1999), chỉ số LSI không được dùng làm chỉ số xác định khả năng ăn mòn đối với thép hoặc những kim loại khác dùng trong ngành xây dựng. Chỉ số LSI chỉ thể hiện độ ổn định của cáu cặn canxi cacbonat có sẵn trong môi trường nước hoặc những cấu trúc chứa canxi cacbonat khác. Chỉ số LSI và các chỉ số bão hòa khác không đảm bảo tính chất ngăn ngừa ăn mòn.[62] Theo một số nghiên cứu, chỉ số bão hòa LSI chỉ được dùng để dự đoán khả năng xảy ra hiện tượng ăn mòn trong môi trường nước có khoảng pH từ 6,5 đến 9,5.[61]

Chỉ số Ryznar

Chỉ số ổn định Ryznar (RSI)[63], hay còn gọi chỉ số bão hòa Ryznar, dựa trên dữ liệu đo lường độ dày lớp cáu cặn trong hệ thống cấp nước đô thị để dự đoán ảnh hưởng tính chất hóa học của nước.[64] Chỉ số RSI được xây dựng dựa trên những quan sát thực nghiệm của tốc độ ăn mòn và sự hình thành lớp màng cáu cặn trong đường ống nước bằng thép. Cũng giống như chỉ số LSI, chỉ số RSI cũng dựa trên lý thuyết tính bão hòa CaCO3; tuy nhiên, khác với LSI, chỉ số RSI chỉ có giá trị dương (lớn hơn 0).[65]

Chỉ số RSI được tính theo công thức sau:[66]

RSI = 2 pHs − pHpHs: pH ở điều kiện bão hòa CaCO3pH: Giá trị đo của mẫu nước
  • Nếu RSI trong khoảng 6,5 < RSI < 7, nước được xem tương đương ở trạng thái cân bằng bão hòa với canxi cacbonat.
  • Nếu RSI < 6, nước ở trạng thái quá bão hòa CaCO3, có xu hướng tạo thành cáu cặn. Chỉ số RSI càng thấp, khả năng tạo cáu cặn càng nhiều.[67]
  • Nếu RSI > 7, cặn canxi cacbonat không thể hình thành (nước ở trạng thái dưới bão hòa CaCO3). Nếu RSI > 8, có thể dẫn đến hiện tượng ăn mòn.[68] Nếu RSI > 9, có thể gây hư hỏng những cấu kiện thiết bị bằng sắt hoặc thép, như bơm, trong khoảng thời gian ngắn.[65][67]

Chỉ số Puckorius

Chỉ số tạo cáu cặn Puckorius (PSI) được sử dụng nhằm định lượng mối liên hệ giữa trạng thái bão hòa và khả năng hình thành cáu cặn bằng cách ước lượng khả năng tạo dung dịch đệm (buffering) của nước. Nước có nồng độ canxi cao nhưng có tính kiềm và khả năng đệm thấp có thể dẫn đến việc độ bão hòa canxi cacbonat cao. Nồng độ canxi cao sẽ dẫn đến tích số giữa ionhoạt độ cao. Đồ thị của tích số ion–hoạt độ và lượng tủa rắn trong nước cho thấp nếu canxi bị kết tủa, sẽ làm độ pH tăng mạnh do tính đệm của dung dịch thấp.[68]

Chỉ số PSI được tính theo công thức gần giống với chỉ số RSI. Tuy nhiên, chỉ số Puckorius sử dụng pH cân bằng thay vì pH thực (pH đo lường) nhằm xét đến sự ảnh hưởng của tính đệm trong dung dịch:[69]

PSI = 2 pHcb − pHs

Với pHcb = 1,465 × log10[A] + 4,54.

Độ kiềm: [A] = [HCO−
3] + 2[CO2−
3] + [OH−
].

  • PSI < 5,5: Nước có xu hướng tạo thành cáu cặn.
  • 5,5 < PSI < 6,5: Khoảng giá trị PSI tối ưu. Dung dịch ở trạng thái cân bằng.
  • PSI > 6,5: Nước có xu hướng ăn mòn.[70]

Các loại chỉ số khác

Ngoài 3 chỉ số được nêu trên, một số loại chỉ số bão hòa khác được sử dụng như Chỉ số Larson–Skold,[71][69] Chỉ số Stiff–Davis,[72] và Chỉ số Oddo–Tomson.[73][74]

Tài liệu tham khảo

WikiPedia: Nước cứng http://www.aquasafecanada.com/mirror/hardness/hard... http://dspace.ucuenca.edu.ec/retrieve/91216/docume... //www.ncbi.nlm.nih.gov/pmc/articles/PMC3775162 //www.ncbi.nlm.nih.gov/pubmed/24049611 http://water.usgs.gov/owq/hardness-alkalinity.html http://www.who.int/water_sanitation_health/dwq/che... //dx.doi.org/10.1002%2F14356007.a28_001 //dx.doi.org/10.1002%2Fj.1551-8833.1944.tb20016.x //dx.doi.org/10.1016%2Fb0-12-369397-7%2F00298-3 //dx.doi.org/10.1016%2Fb978-0-12-409547-2.04402-4